资源类型

期刊论文 636

会议视频 29

会议信息 2

年份

2024 1

2023 60

2022 62

2021 73

2020 35

2019 40

2018 41

2017 31

2016 35

2015 37

2014 23

2013 22

2012 18

2011 25

2010 23

2009 30

2008 16

2007 20

2006 14

2005 7

展开 ︾

关键词

钢结构 8

建筑科学 7

三峡工程 3

优化设计 3

耐久性 3

飞机结构 3

2021全球十大工程成就 2

DSM(设计结构矩阵) 2

Quantitative structure 2

imge analysis 2

stereology 2

产业结构 2

关键技术 2

压力容器技术 2

可持续发展 2

城镇建设 2

机械结构 2

疲劳寿命 2

结构调整 2

展开 ︾

检索范围:

排序: 展示方式:

Effect of concrete creep and shrinkage on tall hybrid-structures and its countermeasures

Pusheng SHEN, Hui FANG, Xinhong XIA

《结构与土木工程前沿(英文)》 2009年 第3卷 第2期   页码 234-239 doi: 10.1007/s11709-009-0020-7

摘要: This paper aims to study the different vertical displacements in tall hybrid-structures and the corresponding engineering measures. First, the method to calculate the different vertical displacements in tall hybrid-structures is presented. This method takes into account the effects of construction process by applying loads sequentially story by story. Based on the concrete creep and shrinkage calculation formula in American Concrete Institute (ACI) code, with the assumption that loads are increased linearly in members, the creep and shrinkage effects of members are analyzed by adopting two parameters named average load-aged coefficient and average age-last coefficient. The effects of steel ratio on members creep are analyzed by age-adjusted module method (AEMM). The effects that core-tube were constructed in advance to outer steel frame were also considered. Then, based on the sample calculation, the measures to effectively reduce the different vertical displacements in hybrid-structures are proposed. This method is simple and practical in the calculation of different vertical displacements in tall and super-tall hybrid-structures.

关键词: creep     shrinkage     construction process     hybrid-structure    

Layout optimization of steel reinforcement in concrete structure using a truss-continuum model

《结构与土木工程前沿(英文)》 2023年 第17卷 第5期   页码 669-685 doi: 10.1007/s11709-023-0963-0

摘要: Owing to advancement in advanced manufacturing technology, the reinforcement design of concrete structures has become an important topic in structural engineering. Based on bi-directional evolutionary structural optimization (BESO), a new approach is developed in this study to optimize the reinforcement layout in steel-reinforced concrete (SRC) structures. This approach combines a minimum compliance objective function with a hybrid truss-continuum model. Furthermore, a modified bi-directional evolutionary structural optimization (M-BESO) method is proposed to control the level of tensile stress in concrete. To fully utilize the tensile strength of steel and the compressive strength of concrete, the optimization sensitivity of steel in a concrete–steel composite is integrated with the average normal stress of a neighboring concrete. To demonstrate the effectiveness of the proposed procedures, reinforcement layout optimizations of a simply supported beam, a corbel, and a wall with a window are conducted. Clear steel trajectories of SRC structures can be obtained using both methods. The area of ​​critical tensile stress in concrete yielded by the M-BESO is more than 40% lower than that yielded by the uniform design and BESO. Hence, the M-BESO facilitates a fully digital workflow that can be extremely effective for improving the design of steel reinforcements in concrete structures.

关键词: bi-directional evolutionary structural optimization     steel-reinforced concrete     concrete stress     reinforcement method     hybrid model    

Structural engineering of transition metal-based nanostructured electrocatalysts for efficient water splitting

Yueqing Wang, Jintao Zhang

《化学科学与工程前沿(英文)》 2018年 第12卷 第4期   页码 838-854 doi: 10.1007/s11705-018-1746-3

摘要: Water splitting is a highly promising approach for the generation of sustainable, clean hydrogen energy. Tremendous efforts have been devoted to exploring highly efficient and abundant metal oxide electrocatalysts for oxygen evolution and hydrogen evolution reactions to lower the energy consumption in water splitting. In this review, we summarize the recent advances on the development of metal oxide electrocatalysts with special emphasis on the structural engineering of nanostructures from particle size, composition, crystalline facet, hybrid structure as well as the conductive supports. The special strategies relay on the transformation from the metal organic framework and ion exchange reactions for the preparation of novel metal oxide nanostructures with boosting the catalytic activities are also discussed. The fascinating methods would pave the way for rational design of advanced electrocatalysts for efficient water splitting.

关键词: water splitting     structure engineering     metal organic framework     ion exchange     synergistic effect     hybrid structure     conductive supports    

Removal of tetrachlorobisphenol A and the effects on bacterial communities in a hybrid sequencing biofilm

Xiaohui Wang, Shuai Du, Tao Ya, Zhiqiang Shen, Jing Dong, Xiaobiao Zhu

《环境科学与工程前沿(英文)》 2019年 第13卷 第1期 doi: 10.1007/s11783-019-1097-4

摘要:

SBBR-CW system was proposed to effectively treat wastewater containing TCBPA.

CW unit contributed more than SBBR to the removal of TCBPA.

TCBPA changed the composition and structure of bacterial community in the system.

GAOs massively grew in SBBR, but did not deteriorate TP removal efficiency.

关键词: SBBR     Constructed wetland     Tetrachlorobisphenol A     Microbial community structure    

3d seismic simulation of underground structures due to point dislocation source by using an FK-FEM hybrid

Zhenning BA; Jisai FU; Zhihui ZHU; Hao ZHONG

《结构与土木工程前沿(英文)》 2022年 第16卷 第12期   页码 1515-1529 doi: 10.1007/s11709-022-0887-0

摘要: Based on the domain reduction idea and artificial boundary substructure method, this paper proposes an FK-FEM hybrid approach by integrating the advantages of FK and FEM (i.e., FK can efficiently generate high-frequency three translational motion, while FEM has rich elements types and constitutive models). An advantage of this approach is that it realizes the entire process simulation from point dislocation source to underground structure. Compared with the plane wave field input method, the FK-FEM hybrid approach can reflect the spatial variability of seismic motion and the influence of source and propagation path. This approach can provide an effective solution for seismic analysis of underground structures under scenario of earthquake in regions where strong earthquakes may occur but are not recorded, especially when active faults, crustal, and soil parameters are available. Taking Daikai subway station as an example, the seismic response of the underground structure is simulated after verifying the correctness of the approach and the effects of crustal velocity structure and source parameters on the seismic response of Daikai station are discussed. In this example, the influence of velocity structure on the maximum interlayer displacement angle of underground structure is 96.5% and the change of source parameters can lead to the change of structural failure direction.

关键词: source-to-structure simulation     FK-FEM hybrid approach     underground structures     point dislocation source    

复合柔性结构航天器动力学建模研究

曲广吉,程道生

《中国工程科学》 1999年 第1卷 第2期   页码 52-56

摘要:

柔性航天器动力学建模的传统方法是采用混合坐标法,针对中心刚体带大型柔性附件类的航天器,这种方法在理论建模和工程应用方面都获得了极大的成功。在中心刚体加柔性附件类航天器柔性动力学研究成果基础上,通过计及柔性体与柔性体连接点间的复合位移变形,利用混合坐标法建立了复合柔性结构航天器动力学模型,其软件系统DASFA 2.0已初步用于工程分析设计。

关键词: 航天器     复合柔性结构     柔性动力学     混合坐标法    

Intelligent hybrid power generation system using new hybrid fuzzy-neural for photovoltaic system and

Alireza REZVANI,Ali ESMAEILY,Hasan ETAATI,Mohammad MOHAMMADINODOUSHAN

《能源前沿(英文)》 2019年 第13卷 第1期   页码 131-148 doi: 10.1007/s11708-017-0446-x

摘要: Photovoltaic (PV) generation is growing increasingly fast as a renewable energy source. Nevertheless, the drawback of the PV system is intermittent because of depending on weather conditions. Therefore, the wind power can be considered to assist for a stable and reliable output from the PV generation system for loads and improve the dynamic performance of the whole generation system in the grid connected mode. In this paper, a novel topology of an intelligent hybrid generation system with PV and wind turbine is presented. In order to capture the maximum power, a hybrid fuzzy-neural maximum power point tracking (MPPT) method is applied in the PV system. The average tracking efficiency of the hybrid fuzzy-neural is incremented by approximately two percentage points in comparison with the conventional methods. The pitch angle of the wind turbine is controlled by radial basis function network-sliding mode (RBFNSM). Different conditions are represented in simulation results that compare the real power values with those of the presented methods. The obtained results verify the effectiveness and superiority of the proposed method which has the advantages of robustness, fast response and good performance. Detailed mathematical model and a control approach of a three-phase grid-connected intelligent hybrid system have been proposed using Matlab/Simulink.

关键词: photovoltaic     wind turbine     hybrid system     fuzzy logic controller     genetic algorithm     RBFNSM    

Robust ensemble of metamodels based on the hybrid error measure

《机械工程前沿(英文)》 2021年 第16卷 第3期   页码 623-634 doi: 10.1007/s11465-021-0641-7

摘要: Metamodels have been widely used as an alternative for expensive physical experiments or complex, time-consuming computational simulations to provide a fast but accurate analysis. However, challenge remains in the prior determination of the most suitable metamodel for a particular case because of the lack of information about the actual behavior of a system. In addition, existing studies on metamodels have largely restricted on solving deterministic problems (e.g., data from finite element models), whereas some real-life engineering problems (e.g., data from physical experiment) are stochastic problems with noisy data. In this work, a robust ensemble of metamodels (EMs) is proposed by combining three regression stand-alone metamodels in a weighted sum form. The weight factor is adaptively determined according to the hybrid error metric, which combines global and local error measures to improve the accuracy of the EMs. Furthermore, three typical individual metamodels that can filter noise are selected to construct the EMs to extend their application in practical engineering problems. Three well-known benchmark problems with different levels of noise and three engineering problems are used to verify the effectiveness of the proposed EMs. Results show that the proposed EMs have higher accuracy and robustness than the individual metamodels and other typical EMs in major cases.

关键词: metamodel     ensemble of metamodels     hybrid error measure     stochastic problem    

Design method and verification of a hybrid prosthetic mechanism with energy-damper clutchable device

《机械工程前沿(英文)》 2021年 第16卷 第4期   页码 747-764 doi: 10.1007/s11465-021-0644-4

摘要: Transfemoral amputees (TAs) have difficulty in mobility during walking, such as restricted movement of lower extremity and body instability, yet few transfemoral prostheses have explored human-like multiple motion characteristics by simple structures to fit the kinesiology, biomechanics, and stability of human lower extremity. In this work, the configurations of transfemoral prosthetic mechanism are synthesized in terms of human lower-extremity kinesiology. A hybrid transfemoral prosthetic (HTP) mechanism with multigait functions is proposed to recover the gait functions of TAs. The kinematic and mechanical performances of the designed parallel mechanism are analyzed to verify their feasibility in transfemoral prosthetic mechanism. Inspired by motion–energy coupling relationship of the knee, a wearable energy-damper clutched device that can provide energy in knee stance flexion to facilitate the leg off from the ground and can impede the leg’s swing velocity for the next stance phase is proposed. Its co-operation with the springs in the prismatic pairs enables the prosthetic mechanism to have the energy recycling ability under the gait rhythm of the knee joint. Results demonstrate that the designed HTP mechanism can replace the motion functions of the knee and ankle to realize its multimode gait and effectively decrease the peak power of actuators from 94.74 to 137.05 W while maintaining a good mechanical adaptive stability.

关键词: hybrid transfemoral prosthetic mechanism     energy recycling     wearable mechanical clutched device     mechanical adaptive stability    

Diffusion process in enzyme–metal hybrid catalysts

《化学科学与工程前沿(英文)》 2022年 第16卷 第6期   页码 921-929 doi: 10.1007/s11705-022-2144-4

摘要: Enzyme–metal hybrid catalysts bridge the gap between enzymatic and heterogeneous catalysis, which is significant for expanding biocatalysis to a broader scope. Previous studies have demonstrated that the enzyme–metal hybrid catalysts exhibited considerably higher catalytic efficiency in cascade reactions, compared with that of the combination of separated enzyme and metal catalysts. However, the precise mechanism of this phenomenon remains unclear. Here, we investigated the diffusion process in enzyme–metal hybrid catalysts using Pd/lipase-Pluronic conjugates and the combination of immobilized lipase (Novozyme 435) and Pd/C as models. With reference to experimental data in previous studies, the Weisz–Prater parameter and efficiency factor of internal diffusion were calculated to evaluate the internal diffusion limitations in these catalysts. Thereafter, a kinetic model was developed and fitted to describe the proximity effect in hybrid catalysts. Results indicated that the enhanced catalytic efficiency of hybrid catalysts may arise from the decreased internal diffusion limitation, size effect of Pd clusters and proximity of the enzyme and metal active sites, which provides a theoretical foundation for the rational design of enzyme–metal hybrid catalysts.

关键词: enzyme–metal hybrid catalyst     internal diffusion     proximity effect     kinetic model    

Powertrain control of a solar photovoltaic-battery powered hybrid electric vehicle

P. PADMAGIRISAN, V. SANKARANARAYANAN

《能源前沿(英文)》 2019年 第13卷 第2期   页码 296-306 doi: 10.1007/s11708-018-0605-8

摘要: This paper proposes a powertrain controller for a solar photovoltaic battery powered hybrid electric vehicle (HEV). The main objective of the proposed controller is to ensure better battery management, load regulation, and maximum power extraction whenever possible from the photovoltaic panels. The powertrain controller consists of two levels of controllers named lower level controllers and a high-level control algorithm. The lower level controllers are designed to perform individual tasks such as maximum power point tracking, battery charging, and load regulation. The perturb and observe based maximum power point tracking algorithm is used for extracting maximum power from solar photovoltaic panels while the battery charging controller is designed using a PI controller. A high-level control algorithm is then designed to switch between the lower level controllers based on different operating conditions such as high state of charge, low state of charge, maximum battery current, and heavy load by respecting the constraints formulated. The developed algorithm is evaluated using theoretical simulation and experimental studies. The simulation and experimental results are presented to validate the proposed technique.

关键词: battery management system     hybrid electric vehicles (HEVs)     maximum power point tracking (MPPT)     solar photovoltaic    

Fatigue shear performance of concrete beams reinforced with hybrid (glass-fiber-reinforced polymer+ steel

《结构与土木工程前沿(英文)》 2021年 第15卷 第3期   页码 576-594 doi: 10.1007/s11709-021-0728-6

摘要: Reinforced concrete beams consisting of both steel and glass-fiber-reinforced polymer rebars exhibit excellent strength, serviceability, and durability. However, the fatigue shear performance of such beams is unclear. Therefore, beams with hybrid longitudinal bars and hybrid stirrups were designed, and fatigue shear tests were performed. For specimens that failed by fatigue shear, all the glass-fiber-reinforced polymer stirrups and some steel stirrups fractured at the critical diagonal crack. For the specimen that failed by the static test after 8 million fatigue cycles, the static capacity after fatigue did not significantly decrease compared with the calculated value. The initial fatigue level has a greater influence on the crack development and fatigue life than the fatigue level in the later phase. The fatigue strength of the glass-fiber-reinforced polymer stirrups in the specimens was considerably lower than that of the axial tension tests on the glass-fiber-reinforced polymer bar in air and beam-hinge tests on the glass-fiber-reinforced polymer bar, and the failure modes were different. Glass-fiber-reinforced polymer stirrups were subjected to fatigue tension and shear, and failed owing to shear.

关键词: fatigue     shear     hybrid stirrups     hybrid reinforcement     fiber-reinforced polymer    

Breeding strategies for increasing yield potential in super hybrid rice

Shihua CHENG,Xiaodeng ZHAN,Liyong CAO

《农业科学与工程前沿(英文)》 2015年 第2卷 第4期   页码 277-282 doi: 10.15302/J-FASE-2015081

摘要: Super hybrid rice breeding is a new breeding method combining semi-dwarf breeding and heterosis breeding using germplasm and gene-environment interactions. This paper reviews the breeding strategies of super hybrid rice breeding in China, focusing on the utilization of heterosis of indica and japonica subspecies, construction of ideal plant architecture and pyramiding of disease resistant genes in restorer lines. To develop super hybrid rice, considerable effort should be made to explore genes related with high yield, good quality, resistance to pests and diseases, tolerance to stresses. Molecular breeding methods in combination with crossing techniques should be adopted in super hybrid rice breeding.

关键词: super hybrid rice     breeding strategies     yield potential    

Crack detection of the cantilever beam using new triple hybrid algorithms based on Particle Swarm Optimization

Amin GHANNADIASL; Saeedeh GHAEMIFARD

《结构与土木工程前沿(英文)》 2022年 第16卷 第9期   页码 1127-1140 doi: 10.1007/s11709-022-0838-9

摘要: The presence of cracks in a concrete structure reduces its performance and increases in the size of cracks result in the failure of the structure. Therefore, the accurate determination of crack characteristics, such as location and depth, is one of the key engineering issues for assessment of the reliability of structures. This paper deals with the inverse analysis of the crack detection problems using triple hybrid algorithms based on Particle Swarm Optimization (PSO); these hybrids are Particle Swarm Optimization-Genetic Algorithm-Firefly Algorithm (PSO-GA-FA), Particle Swarm Optimization-Grey Wolf Optimization-Firefly Algorithm (PSO-GWO-FA), and Particle Swarm Optimization-Genetic Algorithm-Grey Wolf Optimization (PSO-GA-GWO). A strong correlation exists between the changes in the natural frequency of a concrete beam and the crack parameters. Thus, the location and depth of a crack in a beam can be predicted by measuring its natural frequency. Hence, the measured natural frequency can be used as the input parameter of the algorithm. In this paper, this is applied to identify crack location and depth in a cantilever beam using the new hybrid algorithms. The results show that among the proposed triple hybrid algorithms, the PSO-GA-FA and PSO-GWO-FA algorithms are much more effective than PSO-GA-GWO algorithm for the crack detection.

关键词: crack     cantilever beam     triple hybrid algorithms     Particle Swarm Optimization    

A hybrid fuel cell for water purification and simultaneously electricity generation

《环境科学与工程前沿(英文)》 2023年 第17卷 第1期 doi: 10.1007/s11783-023-1611-6

摘要:

● A novel hybrid fuel cell (F-HFC) was fabricated.

关键词: Flow-through field     Hybrid fuel cell     Polyoxometalates     Water purification     Electricity generation    

标题 作者 时间 类型 操作

Effect of concrete creep and shrinkage on tall hybrid-structures and its countermeasures

Pusheng SHEN, Hui FANG, Xinhong XIA

期刊论文

Layout optimization of steel reinforcement in concrete structure using a truss-continuum model

期刊论文

Structural engineering of transition metal-based nanostructured electrocatalysts for efficient water splitting

Yueqing Wang, Jintao Zhang

期刊论文

Removal of tetrachlorobisphenol A and the effects on bacterial communities in a hybrid sequencing biofilm

Xiaohui Wang, Shuai Du, Tao Ya, Zhiqiang Shen, Jing Dong, Xiaobiao Zhu

期刊论文

3d seismic simulation of underground structures due to point dislocation source by using an FK-FEM hybrid

Zhenning BA; Jisai FU; Zhihui ZHU; Hao ZHONG

期刊论文

复合柔性结构航天器动力学建模研究

曲广吉,程道生

期刊论文

Intelligent hybrid power generation system using new hybrid fuzzy-neural for photovoltaic system and

Alireza REZVANI,Ali ESMAEILY,Hasan ETAATI,Mohammad MOHAMMADINODOUSHAN

期刊论文

Robust ensemble of metamodels based on the hybrid error measure

期刊论文

Design method and verification of a hybrid prosthetic mechanism with energy-damper clutchable device

期刊论文

Diffusion process in enzyme–metal hybrid catalysts

期刊论文

Powertrain control of a solar photovoltaic-battery powered hybrid electric vehicle

P. PADMAGIRISAN, V. SANKARANARAYANAN

期刊论文

Fatigue shear performance of concrete beams reinforced with hybrid (glass-fiber-reinforced polymer+ steel

期刊论文

Breeding strategies for increasing yield potential in super hybrid rice

Shihua CHENG,Xiaodeng ZHAN,Liyong CAO

期刊论文

Crack detection of the cantilever beam using new triple hybrid algorithms based on Particle Swarm Optimization

Amin GHANNADIASL; Saeedeh GHAEMIFARD

期刊论文

A hybrid fuel cell for water purification and simultaneously electricity generation

期刊论文